July 24, 1992 / Vol. 41 / No. 29

MMNR
MORBIDITY AND MORTALITY WEEKLY REPORT

521 Outbreak of Type E Botulism New Jersey, 1992
522 Public-Sector Vaccination Efforts United States, 1989-1991
526 Coronary Heart Disease Incidence, By Sex - United States, 1971-1987
529 Estimated National Spending on Prevention - United States, 1988
539 Notice to Readers
539 Quarterly AIDS Map

## Epidemiologic Notes and Reports

## Outbreak of Type E Botulism <br> Associated with an Uneviscerated, Salt-Cured Fish Product New Jersey, 1992

In May 1992, the New Jersey Department of Health (NJDH) received a report of a man admitted to a hospital with a preliminary diagnosis of botulism. Subsequently, three family members of the man were diagnosed with botulism. This report summarizes the epidemiologic investigation of these cases that linked illness to consumption of an uneviscerated, salt-cured fish product.

During May 4-5, a man of Egyptian descent aged 32 years made three visits to a hospital emergency department because of rapidly progressive problems including dizziness, ptosis, facial drooping, dry mouth, weakness, and respiratory failure requiring mechanical ventilation. On the third visit, myasthenia gravis was diagnosed on the basis of a positive Tensilon* test. On May 6, the patient was transferred to another hospital for treatment of suspected mayasthenia gravis; on arrival, he was admitted to intensive care and continued on mechanical ventilation for respiratory failure. Plasmapheresis was performed without improvement in symptoms.

Also on May 6, three family members developed blurred vision, ptosis, and dry mouth. A diagnosis of botulism was considered, and the three family members were hospitalized. All four patients received trivalent (types A, B, and E) botulinal antitoxin.

NJDH traced the source of botulism to an ethnic preparation of fish known as moloha, an uneviscerated, salt-cured fish product. On May 3, the family consumed moloha reported to have been purchased that day from a local retail fish market. They consumed the moloha without cooking or heating it. Botulinal toxin type E was detected in leftover fish and in a stool specimen from the index patient. A family friend who also ate some of the fish but did not develop symptoms was treated with antitoxin as a prophylactic measure.

[^0]
## Type E Botulism - Continued

On May 6, no moloha or similar fish products were found at the market, and the owner denied selling this type of fish. The fish distributors serving this market were contacted, but no source of the fish could be identified.

On May 7, NJDH notified all New Jersey acute-care hospitals, public health departments in the New Jersey and New York City areas, and the New Jersey Poison Information and Education System of the outbreak and signs and symptoms of botulism. On May 8, the public was alerted through the news media to avoid consumption of moloha and to seek medical care if symptoms of botulism developed. CDC notified state epidemiologists of nearby states of the outbreak. No additional cases were identified.
Reported by: G French, MD, A Pavlick, DO, A Felsen, MD, P Gross, MD, Hackensack Medical Center, Hackensack; J Brook, MD, S Paul, MD, C Genese, MBA, K Kolano, G Wolf, KC Spitalny, MD, State Epidemiologist, New Jersey Dept of Health. Div of Emergency and Epidemiological Operations and Newark District Office, Office of Regional Operations, Food and Drug Administration. Enteric Diseases Br, Div of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, CDC.
Editorial Note: Foodborne botulism is a paralytic illness caused by ingestion of a preformed neurotoxin in contaminated food. Patients typically develop cranial nerve palsies followed by descending paralysis that can lead to respiratory failure and death. Of the seven toxin types, three (A, B, and E) account for virtually all cases of botulism in humans. Type $E$ is associated with preserved or fermented fish and marine mammals, and ethnic preparations of uneviscerated fish pickled in brine have previously been associated with type E botulism (1-3).

Treatment for botulism usually requires intensive care, including mechanical ventilation; the early administration of antitoxin is recommended. Physicians who suspect botulism should contact their state health departments immediately for assistance with diagnosis and treatment. State health departments can contact CDC to obtain antitoxin and further assistance.

## References

1. Shaffer N, Wainwright RB, Middaugh JP, Tauxe RV. Botulism among Alaska Natives: the role of changing food preparation and consumption practices. West J Med 1990;153:390-3.
2. Slater PE, Addiss DG, Cohen A, et al. Foodborne botulism: an international outbreak. Int J Epidemiol 1989;18:693-6.
3. Telzak EE, Bell EP, Kautter DA, et al. An international outbreak of type E botulism due to uneviscerated fish. J Infect Dis 1990;161:340-2.

Current Trends

## Public-Sector Vaccination Efforts in Response to the Resurgence of Measles Among Preschool-Aged Children - United States, 1989-1991

From 1989 through 1991, in the United States, the incidence of reported measles increased sixfold to ninefold over the median annual incidence ( 1.3 per 100,000 population) reported from 1981 through 1988. In 1990, the peak of the resurgence, the incidence of measles among children aged $<5$ years was 15 -fold higher than the median 1981-1988 incidence ( 4.8 per 100,000) (1). During 1991, approximately 9500 cases were reported (Figure 1), including 4662 cases among children aged $<5$ years (CDC, unpublished data). The measles epidemic is a consequence primarily of the

## Measles - Continued

failure to vaccinate preschool-aged children at appropriate ages (2); among children aged 16-59 months who developed measles during this resurgence, only $15 \%$ had received measles vaccine as recommended (CDC, unpublished data). This report compares the number of public clinic vaccinations* (i.e., all measles-containing vaccines [MCV] ${ }^{\dagger}$, diphtheria-tetanus-pertussis vaccine [DTP] , and oral polio vaccine [OPV]) for 1988 with that for 1989-1991 in response to the measles resurgence.

During 1989-1991, state health departments reported a provisional total of 55,467 measles cases that resulted in a minimum of 11,251 known hospitalizations, 44,127 hospital days, and 166 suspected measles-related deaths. The resurgence of measles prompted collaborative efforts among federal, state, and local government agencies and private physicians and other private-sector groups to improve overall vaccination coverage among preschool-aged children. Records of vaccine doses (MCV, DTP, and OPV) administered to preschool-aged children in public clinics are reported to CDC by age group by the 63 immunization projects in the United States and its territories for all publicly purchased vaccines. For this report, assessment of the response to the resurgence of measles was limited to vaccinations administered through the public sector (i.e., federally, state-, and locally funded clinics).

Doses of MCV, DTP, and OPV provided in public clinics in 1988 were compared with doses provided annually from 1989 through 1991 (Tables 1 and 2). Among children aged 12-23 months, ${ }^{5}$ the number of doses of MCV administered each year

[^1]FIGURE 1. Reported measles cases* and measles-containing vaccine administered in the public sector to children aged 1-4 years ${ }^{\dagger}$ - United States, 1981-1991


[^2]Measles - Continued
increased substantially after 1988. In 1991, the number of doses administered to children aged 1 year was $42 \%$ higher than in 1988. The estimated proportion of all children aged 12-23 months who received MCV through public clinics also increased, from $25 \%$ during 1988 to $33 \%$ during 1991. During 1989-1991, doses of MCV administered in public clinics increased (mean: 59\%) in the 10 immunization projects with the largest measles outbreaks during these years; however, vaccination also increased (mean: 38\%) in immunization project sites that did not have large measles outbreaks. In addition to increases in MCV vaccination, doses of DTP and OPV administered to children aged $<12$ months increased (DTP increased $26 \%$ and OPV, $22 \%$ ). Overall, during 1989-1991, doses of MCV, DTP, and OPV administered to all preschool-aged children increased at a similar level.
Reported by: Div of Immunization, National Center for Prevention Svcs, CDC.
Editorial Note: The findings in this report indicate that since 1988, a steadily increasing number of doses of MCV, DTP and OPV have been administered to children at the appropriate age through public-sector vaccination programs. Moreover, these increases also occurred in areas other than those in which measles outbreaks occurred during 1989-1991.

TABLE 1. Doses of measles-containing vaccine (MCV) administered in public clinics to children aged 12-23 months, by year - United States, 1988-1991

| Year | Doses <br> administered | \% Change <br> compared <br> with 1988 | \% Vaccinated* |
| ---: | :---: | :---: | :---: |
| 1988 | 953,535 | - | 25 |
| 1989 | $1,070,240$ | 12 | 27 |
| 1990 | $1,239,259$ | 30 | 31 |
| 1991 | $1,358,117$ | 42 | 33 |

*Estimated population of children aged 12-23 months divided by the number of doses of MCV administered in public clinics to children aged 12-23 months.

TABLE 2. Doses of diphtheria and tetanus toxoids and pertussis vaccine (DTP) and doses of oral polio vaccine (OPV) administered in public clinics to children aged <12 months, by year - United States, 1988-1991

|  | Doses <br> administered | \% Change <br> compared <br> with 1988 | \% Vaccinated <br> with dose 1* |
| :--- | :---: | :---: | :---: |
| DTP | $3,000,248$ |  |  |
| 1988 | $3,241,429$ | - | 30 |
| 1989 | $3,410,507$ | 8 | 30 |
| 1990 | $3,788,208$ | 14 | 30 |
| 1991 |  | 26 | 35 |
| OPV | $2,359,966$ | - | 29 |
| 1988 | $2,465,770$ | 4 | 29 |
| 1989 | $2,603,725$ | 10 | 30 |
| 1990 | $2,603,725$ | 22 | 34 |
| 1991 |  |  |  |

[^3]Measles - Continued
Although the incidence of measles began to decrease during 1991, intense publicity efforts about the need for preschool vaccination continued, and the greatest number of doses of all three vaccines were administered that year (Figure 1). The reasons for the improved vaccination performance of the public sector reflect, in part, collaborative public- and private-sector efforts to 1) educate and motivate parents to ensure their children are vaccinated at recommended ages and 2) assure that providers both reduce barriers to vaccination and take advantage of all opportunities to vaccinate.

Some of the increase in vaccinations since the resurgence of measles also might reflect a shift in vaccine delivery from the private to public sector. A recent survey of physicians in Dallas suggested they were referring substantially more patients to public clinics where vaccines were available free or at nominal charge because these patients could not afford vaccination in the private sector (4). In particular, from 1982 through 1992, the price of vaccines to fully vaccinate a child increased approximately 10 -fold in the private sector-in part, because the Advisory Committee on Immunization Practices and the Committee on Infectious Diseases of the American Academy of Pediatrics now recommend 17-18 doses of different vaccines, compared with 10 doses in 1982 ( 5 ). Much of this increased cost must be borne by the parent since, as of 1990, only half of the traditional employer-based indemnity plans provided reimbursement for childhood vaccination (6).

During 1991, although approximately 400,000 more children were vaccinated against measles at the appropriate age than in 1988, only $33 \%$ of these 1 -year-olds may have been vaccinated against measles at the recommended age in public clinics - a percentage substantially lower than the estimated $50 \%$ of children traditionally served by the public sector. Major sustainable improvements in vaccination programs are still needed to meet the national health objective for the year 2000 to completely vaccinate $90 \%$ of children by their second birthday (objective 20.11) (7).

During the next several years, as children vaccinated during 1989-1991 enter school, vaccination records will become available for public health agencies to assess whether the increases in vaccine administered in the public sector were associated with overall increases in vaccination levels of preschool-aged children.

## References

1. Gindler JS, Atkinson WL, Markowitz LE, Hutchin SS. The epidemiology of measles in the United States in 1989 and 1991. Pediatr Infect Dis J (in press).
2. National Vaccine Advisory Committee. The measles epidemic: the problems, barriers and recommendations. JAMA 1991;266:1547-52.
3. CDC. Measles prevention: recommendations of the Immunization Practices Advisory Committee (ACIP). MMWR 1989;38(no. S-9):7.
4. Schulte JM, Brown GR, Zetzman MR, et al. Changing immunization referral patterns among pediatricians and family practice physicians, Dallas County, Texas, 1988. Pediatrics 1991;87: 204-7.
5. Orenstein WA. Future directions. In: Proceedings of the 26 th Immunization Conference. St. Louis: June 1-6, 1992 (in press).
6. Sullivan CB. Health insurance picture in 1990. Washington, DC: Health Insurance Association of America, 1991; HIAA publication no. 1990RB.
7. Public Health Service. Healthy people 2000: national health promotion and disease prevention objectives. Washington, DC: US Department of Health and Human Services, Public Health Service, 1991:122-3; DHHS publication no. (PHS)91-50213.

## Coronary Heart Disease Incidence, by Sex United States, 1971-1987

Coronary heart disease (CHD) is the leading cause of death in the United States for both men and women, although the rates are lower among women (1). The incidence of CHD, however, has not been as well characterized among women as it has among men (2). This report presents data on sex-specific incidence of CHD and the risks associated with smoking, diabetes, hypertension, total cholesterol, body mass, and age using data from the Epidemiologic Follow-up Study of the First National Health and Nutrition Examination Survey (NHEFS) (3).

The NHEFS is the first prospective cohort study of a representative sample ( $n=14,407$ ) of the noninstitutionalized U.S. adult population. During 1971 through 1975, members of the First National Health and Nutrition Examination Survey (NHANES I) cohort completed an extensive interview regarding demographic characteristics and medical history and received a standardized physical examination. During 1982-84, 1986, and 1987, the NHEFS attempted to trace and re-interview NHANES I participants aged $\geqslant 25$ years during the baseline exam. Death certificates and records of hospitalizations also were obtained. As of 1987, more than $96 \%$ of the initial study participants either had been recontacted at least once or had died.

This analysis was limited to persons without CHD at baseline as ascertained through self-report and physical examination. Because of the small number of persons of other races in the sample, results are presented for the 12,402 white participants. Information obtained during the baseline physical examination and in-person interview as well as subsequent interviews was used to characterize each person's exposure to various CHD risk factors at baseline. Hospitalizations in which a diagnosis of CHD (International Classification of Diseases, Ninth Revision, Clinical Modification, codes 410-414) was listed on the discharge summary provided the measure for CHD morbidity. CHD mortality was defined as deaths for which CHD was listed as the underlying cause of death on the death certificate. The first diagnosis of CHD, either at hospitalization or death, was used as the measure of CHD incidence.

Incidence rates were calculated as incidence densities; each person could contribute person-years of follow-up to more than one age category (e.g., a 42 -year-old person who was followed for 11 years contributed 3 years to the $25-44$-year age group and 8 years to the 45-54-year age group). The mean length of follow-up for CHD incidence was 12.4 years. Sex-specific Cox proportional hazards models that included all the risk factors being analyzed were used to obtain relative risks (RRs), controlling for all the other variables. These adjusted RRs were then used to obtain the population-attributable risk percentage (PAR\%) (i.e., the proportion of risk in the study population attributable to each factor, controlling for all others).

The age-adjusted CHD incidence rate for men was 110 per 10,000 person-years; for women, the rate was 64 per 10,000 person-years. Within each age group, men had a higher rate of CHD incidence (Figure 1). While the rate generally increased by the same amount with age for men aged 25-74 years, the rate of increase of CHD incidence among women accelerated after age 65 years. Thus, the RR for CHD for women increased from 0.3 for the youngest two age groups (25-44 years and 45-54 years) to 0.8 for the oldest ( $\geqslant 75$ years).

Men were more likely than women to be first diagnosed with an acute form of CHD. Death was the incident CHD event among $18.6 \%$ of men, compared with $12.5 \%$ of

Coronary Heart Disease - Continued
women. Myocardial infarction was diagnosed in $41.3 \%$ of incident CHD events among men and $29.7 \%$ of incident events among women. Although women were more often first diagnosed with chronic CHD, specific CHD diagnoses could not be reliably analyzed individually.

Most of the risk factors studied appeared to have similar effects on CHD incidence in men and women when assessed in sex-specific models (Table 1). Cholesterol is the only risk factor for which the effect was greater among men. Furthermore, when data for both sexes were combined and interactions between sex and all risk factors were included, only age and cholesterol had significantly different effects on incidence among women than among men ( $p<0.05$ ).

When sex-specific models were stratified by age ( $25-64$ years and 65-75 years), the associations between most risk factors were weaker among the older participants in both sexes. The only exception was the relation between education and CHD incidence among men, which was stronger among older participants.

Most of the risk factors were associated with a similar proportion of CHD incidence among women and men as measured by PAR\% (Table 2). The exceptions to this were high cholesterol, which accounted for a higher proportion of CHD incidence among men, and having less than 9 years of education, which accounted for a higher proportion of CHD incidence among women.
Reported by: Div of Analysis, Office of Analysis and Epidemiology, National Center for Health Statistics, CDC.
Editorial Note: Since the mid-1960s, national death rates for CHD have been decreasing for both sexes (4). However, the proportional decrease has been greater among men than women, even though the decline began first among women. During that time, women in other developed countries (e.g., Finland and Sweden) have had larger proportional reductions in CHD mortality than men, even though in these countries,

FIGURE 1. Coronary heart disease incidence rate,* by sex and age group Epidemiologic Follow-up Study of the First National Health and Nutrition Examination Survey, 1982-84, 1986, and 1987 ${ }^{\dagger}$


[^4]
## Coronary Heart Disease - Continued

as in the United States, men aged 40-69 years have been at least 2.5 times more likely to die from CHD than women (5). Thus, better understanding of risk factors may assist in reducing the incidence of CHD among women in the United States.

The rates of CHD incidence measured in this study may differ somewhat from the true incidence rates in the United States. In particular, the rates may be higher because of oversampling of persons of lower socioeconomic status during NHANES I, or they may be lower because of incomplete ascertainment of hospital stays or because persons diagnosed with but not hospitalized for CHD were not included (e.g., silent myocardial infarctions, which tend to be more prevalent among women [6], may not be identifiable from hospital records). Nonetheless, this database provides estimates of nationally representative CHD morbidity rates that are unavailable elsewhere.

Most women with CHD in the NHANES I cohort were diagnosed with a chronic form of CHD when they were hospitalized or when CHD was identified as the cause of death; some form of acute CHD was more likely to be diagnosed in men. Potential explanations for this difference include differential diagnosis of CHD by physicians or

TABLE 1. Relative risk for coronary heart disease, by sex, comparing the presence of each factor to its absence and controlling for all others - Epidemiologic Follow-up Study of the First National Health and Nutrition Examination Survey, 1982-84, 1986, and 1987*

|  | Men |  | Women |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Risk factor | $\mathbf{R R}^{\dagger}$ | $\left(95 \% \mathbf{C l}^{\boldsymbol{s}}\right)$ |  | $\mathbf{R R}$ | $(95 \% \mathbf{C l})$ |
| Education |  |  |  |  |  |
| $\quad \leqslant 8$ th grade | 1.3 | $(1.1-1.6)$ | 1.6 | $(1.3-2.0)$ |  |
| $9-12$ th grade | 1.1 | $(0.9-1.3)$ | 1.1 | $(0.9-1.4)$ |  |
| Hypertension | 1.5 | $(1.3-1.7)$ | 1.5 | $(1.3-1.8)$ |  |
| High cholesterol | 1.4 | $(1.2-1.6)$ | 1.1 | $(0.9-1.2)$ |  |
| Diabetes | 1.9 | $(1.5-2.5)$ | 2.4 | $(1.9-3.0)$ |  |
| Overweight | 1.3 | $(1.1-1.5)$ | 1.4 | $(1.2-1.6)$ |  |
| Cigarette smoking | 1.6 | $(1.4-1.8)$ | 1.8 | $(1.5-2.1)$ |  |

*Because of the small number of persons of other races in the sample, this includes only the 12,402 white participants.
${ }^{\dagger}$ Relative risk.
${ }^{5}$ Confidence interval.
"Compared with persons having completed at least some college education.
TABLE 2. Population-attributable risk percentages for selected risk factors of coronary heart disease, by sex - Epidemiologic Follow-up Study of the First National Health and Nutrition Examination Survey, 1982-84, 1986, and 1987*

| Risk factor | Men | Women |
| :--- | ---: | :---: |
| <9th-grade education | $7 \%$ | $11 \%$ |
| Hypertension | $13 \%$ | $13 \%$ |
| High cholesterol | $10 \%$ | $2 \%$ |
| Diabetes | $4 \%$ | $5 \%$ |
| Overweight | $6 \%$ | $9 \%$ |
| Cigarette smoking | $20 \%$ | $19 \%$ |

[^5]
## Coronary Heart Disease - Continued

differential treatment whereby physicians do not treat CHD as aggressively in women, allowing it to progress to advanced stages that are less successfully treated (7). Although data regarding severity of disease were not obtained in this study, the findings suggest the need to further assess possible differentials in recorded diagnoses.

In this analysis, age was the strongest risk factor and the factor differing the most by sex. Although for persons aged $25-64$ years, the ratio of male-to-female CHD incidence was 2:1, the risk for CHD in older women was approximately the same as in older men. This effect of age is only partially explained by cessation of estrogen production after menopause $(2,8)$, and additional causes of the effect of age must be identified and studied.

In this analysis, risk factors often targeted in health education programs (i.e., hypertension, high cholesterol, cigarette smoking, and overweight) all appear related to incidence of CHD in both sexes. Cigarette smoking and hypertension are especially important modifiable factors that increase the risk for CHD. Although a weak association between CHD and cholesterol was found among women, this may reflect the need to study component elements of cholesterol (e.g., low-density lipoprotein). Finally, the substantial impact of low education levels on the incidence of CHD among women and older men suggests that low socioeconomic status has an additional influence on CHD not mediated through other risk factors.

## References

1. NCHS. Health, United States, 1990. Hyattsville, Maryland: US Department of Health and Human Services, Public Health Service, CDC, 1991; DHHS publication no. (PHS)91-1232.
2. Eaker ED, Packard B, Thom TJ. Epidemiology and risk factors for coronary heart disease in women. Cardiovasc Clin 1989;19:129-45.
3. NCHS. Plan and operation of the NHANES I Epidemiologic Followup Study, 1982-84. Hyattsville, Maryland: US Department of Health and Human Services, Public Health Service, CDC, 1987. (Vital and health statistics; series 1, no. 22).
4. Higgins M, Thom T. Trends in CHD in the United States. Int J Epidemiol 1989;18(suppl 1):S58-66.
5. Beaglehole R. International trends in coronary heart disease mortality, morbidity, and risk factors. Epidemiol Rev 1990;12:1-15.
6. Lerner DJ, Kannel WB. Patterns of coronary heart disease morbidity and mortality in the sexes: a 26 -year follow-up of the Framingham population. Am Heart J 1986;111:383-90.
7. Khan SS, Nessim S, Gray R, Czer LS, Chaux A, Matloff J. Increased mortality of women in coronary artery bypass surgery: evidence for referral bias. Ann Intern Med 1990;112:561-7.
8. Barrett-Connor E, Bush TL. Estrogen and coronary heart disease in women. JAMA 1991;265: 1861-7.

Effectiveness in Disease and Injury Prevention

## Estimated National Spending on Prevention United States, 1988

Despite the overall health improvements achieved through preventive interventions, the United States continues to be burdened by preventable illness, injury, and disability (1). For example, annual health-care expenditures for cardiovascular disease alone exceed $\$ 135$ billion and injury and disability, $\$ 170$ billion (1). This report summarizes the findings of a study to estimate national funding for health promotion and disease prevention in the United States during 1988 (2).

## Prevention - Continued

The Health Care Financing Administration (HCFA) annually estimates the total national expenditures on health in the national health accounts (NHA)* (3). The NHA is the benchmark for determining the amount and growth of spending on health and for characterizing what services and products are purchased and the sources of payment. However, NHA information on prevention expenditures is limited because of cost definitions, demarcations between categories, and the availability and accuracy of secondary data sources. Further, NHA does not include all spending on prevention. For example, certain prevention programs such as environmental health, sewer and water systems, and social programs (e.g., the Supplemental Food Program for Women, Infants, and Children) that have a health component are not included in NHA. Therefore, a comprehensive estimate of spending on prevention in the United States requires additional assumptions and additional data sources.

For this study (3), prevention was defined as activities that reduce the incidence, prevalence, and burden of disease and injury and enhance health by improving physical, social, and mental well-being. The three categories of prevention are health promotion, health protection, and preventive health services (1). Health promotion activities influence personal health behaviors; health protection changes the social and physical environment to restrict personal exposures; and preventive health services offer counseling, screening, and vaccination in clinical settings.

To document all such sources of prevention funding, data were examined by funding sources ${ }^{\dagger}$ ( 2,4 ), including federal, state, and local government programs; voluntary health associations; corporations and foundations; worksite programs; and personal prevention services.

Based on this review and analysis, CDC estimates that in 1988 the total spending on prevention in the United States was $\$ 32.8$ billion ( $0.7 \%$ of the gross national product [GNP]). Approximately half ( $\$ 15.7$ billion [48\%]) of this was spent by the federal government; personal spending and insurance spent nearly one third $(\$ 10.0$ billion [31\%]); state governments, $\$ 3.7$ billion (11\%); and local governments, $\$ 2.4$ billion ( $7 \%$ ). The remaining $\$ 1.0$ billion ( $3 \%$ ) was spent by voluntary health associations, foundations, and corporations through worksite health promotion programs.

Of the total prevention-related spending in 1988, $\$ 11.6$ billion ( $35 \%$ ) was spent on preventive health services, $\$ 9.8$ billion ( $30 \%$ ) on health protection, and $\$ 7.8$ billion ( $24 \%$ ) on health promotion. The remaining $\$ 3.7$ billion ( $11 \%$ ) of prevention spending could not be categorized, often because the spending overlapped multiple categories.

[^6]
## Prevention - Continued

To estimate the proportion spent on prevention within the NHA categories, the study identified prevention-related goods and services using the same categories and sources of data as the NHA. In 1988, national health expenditures accounted for $\$ 539.9$ billion ( $11 \%$ of the GNP) (4); of the total national health expenditures within all categories included in the NHA, $\$ 18.4$ billion ( $3 \%$ ) was spent on prevention.
Reported by: R Brown, MS, J Corea, B Luce, PhD, Battelle, Medical Technology and Policy Research Center, Arlington, Virginia; A Elixhauser, PhD, Agency for Health Care Policy and Research; S Sheingold, PhD, Health Care Financing Administration. Office of Program Planning and Evaluation, Office of the Director, CDC.
Editorial Note: This study suggests that approximately $3 \%$ of health-care expenditures in the United States are allocated to prevention. The accuracy of this estimate, however, is affected by the accuracy of the original data sources and the completeness of data collection. Because of the accountability required for government spending, only spending from private and insurance sources - which constitute one third of spending on prevention-are likely to be substantially underestimated. However, even if spending from private and insurance funds had been underestimated by $50 \%$, total spending on prevention would not exceed $5 \%$ of expenditures.

Increasing concern about the influence of estimates of health-care effectiveness on policy decisions may require periodic reviews of health information systems. To more accurately characterize the cost and the value of preventive services in the United States, CDC has initiated a multifaceted assessment of the effectiveness of selected preventive measures and strategies (5,6). In addition, the Medical Treatment Effectiveness Program of the Agency for Health Care Policy and Research has instituted efforts to improve the effectiveness and appropriateness of clinical practice, including preventive services (7).

More precise information on the benefits of prevention services should assist legislators, health-care organizations, public health agencies, and other decision makers in developing strategies to address fundamental concerns, such as access to health care, increasing health-care costs, and the changing health-care needs of an aging population ( 5,6 ). Strategies to increase and optimize the application of national prevention resources should be designed to 1 ) increase disease and injury prevention awareness and to promote healthy behaviors; 2) change the social and physical environment to eliminate exposures that can cause disease and injury; and 3) provide counseling and screening in clinical settings.

## References

1. Public Health Service. Healthy people 2000: national health promotion and disease prevention objectives - full report, with commentary. Washington, DC: US Department of Health and Human Services, Public Health Service, 1991; DHHS publication no. (PHS)91-50212.
2. Brown R, Elixhauser A, Corea J, Luce B, Sheingold S. National expenditures for health promotion and disease prevention activities in the United States. Washington, DC: Battelle; Medical Technology Assessment and Policy Research Center, 1991; publication no. BHARC-013/91-019.
3. Office of National Cost Estimates. Revision to the national health accounts and methodology. Health Care Financing Review 1990;11:42-54.
4. Office of National Cost Estimates. National health expenditures, 1988. Health Care Financing Review 1990;11:1-41.
5. CDC. Public health focus: effectiveness of disease and injury prevention. MMWR 1992;41: 265-6.
6. CDC. A framework for assessing the effectiveness of disease and injury prevention. MMWR 1992;41(no. RR-3).
7. Agency for Health Care Policy and Research. Medical treatment effectiveness research. In: AHCPR program note. Rockville, Maryland: US Department of Health and Human Services, Public Health Service, March 1990.

FIGURE I. Notifiable disease reports, comparison of 4-week totals ending July 18, 1992, with historical data - United States

*Ratio of current 4-week total to the mean of 154 -week totals (from previous, comparable, and subsequent 4 -week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4 -week totals.

## TABLE I. Summary - cases of specified notifiable diseases, United States, cumulative, week ending July 18, 1992 (29th Week)

|  | Cum. 1992 |  | Cum. 1992 |
| :---: | :---: | :---: | :---: |
| AIDS* | 23,872 | Measles: imported | 88 |
| Anthrax | 23,872 | indigenous | 1,259 |
| Botulism: Foodborne | 8 | Plague | 2 |
| Infant | 31 | Poliomyelitis, Paralytic ${ }^{\dagger}$ | 5 |
| Other | 1 | Psittacosis | 50 |
| Brucellosis | 38 | Rabies, human | - |
| Cholera | 42 | Syphilis, primary \& secondary | 18,566 |
| Congenital rubella syndrome | 7 | Syphilis, congenital, age $<1$ year $^{5}$ | 697 |
| Diphtheria | 3 | Tetanus | 9 |
| Encephalitis, post-infectious | 85 | Toxic shock syndrome | 142 |
| Gonorrhea | 263,601 | Trichinosis | 17 |
| Haemophilus influenzae (invasive disease) | 841 | Tuberculosis | 11,618 |
| Hansen Disease | 96 | Tularemia | 71 |
| Leptospirosis | 17 | Typhoid fever | 179 |
| Lyme Disease | 2,997 | Typhus fever, tickborne (RMSF) | 172 |

[^7]TABLE II. Cases of selected notifiable diseases, United States, weeks ending July 18, 1992, and July 20, 1991 (29th Week)

| Reporting Area | AIDS* | Aseptic Meningitis | Encephalitis |  | Gonorrhea |  | Hepatitis (Viral), by type |  |  |  | Legionellosis | $\begin{gathered} \text { Lyme } \\ \text { Disease } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Primary | Post-infectious |  |  | A | B | NA,NB | Unspecified |  |  |
|  | $\begin{aligned} & \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1991 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{array}{\|l} \hline \text { Cum. } \\ 1992 \end{array}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \end{aligned}$ | Cum. 1992 |
| UNITED STATES | 23,872 | 3,312 | 289 | 85 | 263,601 | 321,555 | 10,765 | 8,530 | 4,051 | 360 | 694 | 2,997 |
| NEW ENGLAND | 755 | 151 | 17 | - | 5,559 | 8,025 | 320 | 319 | 39 | 15 | 34 | 600 |
| Maine | 27 | 14 | 1 | - | 41 | 91 | 23 | 17 | 5 | - | 1 | 4 |
| N.H. | 25 | 7 | 2 | - | 12 | 154 | 23 | 24 | 12 | 1 | 3 | 15 |
| Vt . | 11 | 7 | 2 | - | 14 | 27 | 5 | 8 | 5 | - | 2 | 2 |
| Mass. | 431 | 62 | 9 | - | 2,058 | 3,431 | 162 | 240 | 14 | 14 | 18 | 52 |
| R.I. | 61 | 61 | 3 | - | 416 | 634 | 74 | 17 | 3 | - | 10 | 70 |
| Conn. | 200 | - | - | - | 3,018 | 3,688 | 33 | 13 | - | - | - | 457 |
| MID. ATLANTIC | 6,001 | 340 | 15 | 7 | 27,225 | 38,940 | 811 | 1,122 | 200 | 13 | 203 | 1,796 |
| Upstate N.Y. | 736 | 158 | - | - | 5,408 | 6,652 | 199 | 269 | 126 | 6 | 83 | 1,213 |
| N.Y. City | 3,309 | 70 | 4 | 1 | 8,844 | 15,199 | 305 | 193 | 3 | - | 3 | 4 |
| N.J. | 1,214 |  | - | - | 3,884 | 6,407 | 122 | 288 | 52 | 7 | 24 | 193 |
| Pa. | 742 | 112 | 11 | 6 | 9,089 | 10,682 | 185 | 372 | 19 | 7 | 93 | 386 |
| E.N. CENTRAL | 2,192 | 463 | 75 | 26 | 49,411 | 58,396 | 1,554 | 1,292 | 710 | 22 | 157 | 62 |
| Ohio | 414 | 131 | 23 | 2 | 15,144 | 18,033 | 238 | 129 | 58 | 4 | 73 | 29 |
| Ind. | 222 | 68 | 8 | 11 | 4,618 | 5,770 | 459 | 453 | 329 | 6 | 17 | 19 |
| III. | 979 | 97 | 24 | 6 | 16,082 | 17,064 | 280 | 126 | 37 | 4 | 10 | 4 |
| Mich. | 457 | 160 | 19 | 7 | 11,576 | 13,371 | 80 | 343 | 244 | 8 | 38 | 10 |
| Wis. | 120 | 7 | 1 | - | 1,991 | 4,158 | 497 | 241 | 42 | - | 19 | - |
| W.N. CENTRAL | 675 | 160 | 17 | 5 | 11,320 | 15,699 | 1,251 | 351 | 147 | 18 | 42 | 111 |
| Minn. | 120 | 15 | 2 | - | 1,566 | 1,573 | 390 | 44 | 12 | 2 | 2 | 37 |
| lowa | 50 | 26 | - | 3 | 857 | 1,111 | 20 | 20 | 4 | 2 | 13 | 9 |
| Mo. | 347 | 59 | 8 | - | 6,070 | 9,655 | 414 | 231 | 113 | 13 | 14 | 44 |
| N. Dak. | 1 | 1 | 1 | - | 39 | 34 | 68 | 1 | 3 | 1 | 1 | 1 |
| S. Dak. | 6 | 6 | - | 1 | 95 | 183 | 179 | 4 | 5 | - | 11 | $10^{-}$ |
| Nebr. | 29 | 10 | 2 | 1 | 8 | 1,104 | 88 | 13 | 5 | - | 11 | 10 |
| Kans. | 122 | 43 | 4 | - | 2,685 | 2,039 | 92 | 38 | 10 | - | 1 | 10 |
| S. ATLANTIC | 5,678 | 640 | 59 | 35 | 84,453 | 97,555 | 677 | 1,446 | 570 | 56 | 103 | 203 |
| Del. | 64 | 21 | 6 | - | 963 | 1,374 | 24 | 139 | 115 | 1 | 16 | 83 |
| Md. | 669 | 85 | 10 | - | 8,108 | 10,098 | 129 | 221 | 21 | 5 | 18 | 27 |
| D.C. | 417 | 13 | 1 | - | 3,773 | 5,473 | 11 | 45 | 233 | - | 7 | - |
| Va . | 322 | 105 | 19 | 9 | 9,793 | 9,360 | 61 | 105 | 23 | 20 | 10 | 52 |
| W. Va. | 29 | 7 | 3 | . | 497 | 648 | 4 | 32 | 1 | 12 | - | 3 |
| N.C. | 370 | 72 | 16 | - | 13,929 | 19,400 | 58 | 237 | 55 | - | 17 | 22 |
| S.C. | 166 | 7 | - | - | 6,107 | 7,499 | 14 | 30 | 5 | - | 16 | - |
| Ga. | 759 | 79 | 2 | $\stackrel{-}{\circ}$ | 26,020 | 23,860 | 87 | 169 | 55 | - | 5 | 2 |
| Fla. | 2,882 | 251 | 2 | 26 | 15,263 | 19,843 | 289 | 468 | 67 | 18 | 14 | 14 |
| E.S. CENTRAL | 739 | 211 | 10 | - | 25,681 | 30,663 | 168 | 730 | 1,229 | 2 | 33 | 41 |
| Ky. | 105 | 66 | 7 | - | 2,667 | 3,240 | 46 | 44 | 2 | - | 16 | 14 |
| Tenn. | 227 | 48 | 1 | - | 7.965 | 11,046 | 74 | 608 | 1,216 | - | 11 | 22 |
| Ala. | 272 | 56 | 1 | - | 8,723 | 8,667 | 27 | 75 | 10 | 1 | 6 | 5 |
| Miss. | 135 | 41 | 1 | - | 6,326 | 7,710 | 21 | 3 | 1 | 1 | - | . |
| W.S. CENTRAL | 2,174 | 416 | 29 | 4 | 29,995 | 37,144 | 1,018 | 1,072 | 71 | 83 | 11 | 67 |
| Ark. | 112 | 5 | 7 | - | 4,357 | 4,217 | 52 | 46 | 6 | 3 | - | 10 |
| La. | 390 | 33 | 2 | 1 | 8,404 | 8,622 | 92 | 86 | 29 | 2 | 1 | 2 |
| Okla. | 147 | - | 2 | 2 | 2,941 | 3,676 | 115 | 103 | 21 | 3 | 5 | 16 |
| Tex. | 1,525 | 378 | 18 | 1 | 14,293 | 20,629 | 759 | 837 | 15 | 75 | 5 | 39 |
| MOUNTAIN | 686 | 118 | 13 | 4 | 6,098 | 6,869 | 1,550 | 390 | 158 | 33 | 56 | 4 |
| Mont. | 12 | 2 | 1 | 1 | 60 | 62 | 50 | 22 | 29 | . | 9 | . |
| Idaho | 15 | 19 | - | - | 63 | 84 | 34 | 52 | 3 | - | 4 | 2 |
| Wyo. | 2 | - | 1 | - | 30 | 54 | 3 | 2 | 10 | - | 1 | 1 |
| Colo. | 236 | 35 | 6 | 1 | 1,832 | 1,992 | 440 | 61 | 52 | 17 | 10 | . |
| N. Mex. | 58 | 8 | 3 | 1 | 506 | 636 | 153 | 106 | 15 | 7 | 2 | - |
| Ariz. | 203 | 35 | 1 | - | 2,340 | 2,567 | 643 | 78 | 18 | 4 | 17 | - |
| Utah | 54 | 1 | 1 | 1 | 158 | 181 | 178 | 9 | 19 | 5 | 2 | 1 |
| Nev. | 106 | 18 | - | - | 1,109 | 1,293 | 49 | 60 | 12 | - | 11 | . |
| PACIFIC | 4,972 | 813 | 54 | 4 | 23,859 | 28,264 | 3,416 | 1,808 | 927 | 118 | 55 | 113 |
| Wash. | 255 | - | 1 | - | 2,091 | 2,521 | 380 | 184 | 73 | 6 | 8 | 3 |
| Oreg. | 146 | ${ }^{\circ}$ | - | - | 897 | 1,150 | 196 | 165 | 42 | 7 | - | . |
| Calif. | 4,484 | 758 | 50 | 3 | 20,210 | 23,730 | 2,674 | 1,439 | 653 | 97 | 46 | 110 |
| Alaska | 8 | 5 | 3 | - | 400 | 427 | 30 | 8 | 2 | 1 | - | - |
| Hawaii | 79 | 50 | . | 1 | 261 | 436 | 136 | 12 | 157 | 7 | 1 | . |
| Guam | - | 2 | - | - | 45 | - | 5 | 1 | - | 6 | . | 1 |
| P.R. | 876 | 94 | 1 | . | 98 | 362 | 20 | 249 | 75 | 16 | 1 | . |
| V.I. | 2 | - | - | - | 60 | 258 | 2 | 5 | . |  | - | . |
| Amer. Samoa | . | - | - | - | 24 | 27 | 1 | 1 | - | . | - | - |
| C.N.M.I. | - | - | - | - | 41 | 37 | . | - | - | - | - | . |

[^8]TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending July 18, 1992, and July 20, 1991 (29th Week)

| Reporting Area | Malaria | Measies (Rubeola) |  |  |  |  | Menin- <br> gococcal <br> Infections <br> Cum. <br> 1992 | Mumps |  | Pertussis |  |  | Rubella |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Indigenous |  | Imported* |  | Total <br> Cum. <br> 1991 |  |  |  |  |  |  |  |  |  |
|  | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \end{aligned}$ | 1992 | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \\ & \hline \end{aligned}$ | 1992 | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \end{aligned}$ |  |  | 1992 | $\begin{aligned} & \text { Cum. } \\ & 1992 \end{aligned}$ | 1992 | $\begin{aligned} & \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$ | 1992 | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1991 \end{aligned}$ |
| UNITED STATES | 456 | 68 | 1,259 | 2 | 88 | 7,850 | 1,346 | 24 | 1,627 | 80 | 913 | 1,252 | 2 | 117 | 1,039 |
| NEW ENGLAND | 24 | - | 45 | - | 7 | 57 | 84 | - | 10 |  |  |  |  |  | 4 |
| Maine | - | - |  | - | . | 57 | 8 7 | - | 10 | - | 79 3 | 193 44 | - | 6 | 4 |
| N.H. | 3 | - | 15 | - | - |  | 5 | - | 2 | - | r 24 | 17 | - | 1 | 1 |
| Vt. | - | - | - | - | $\cdot$ | 5 | 3 | - | 2 | - | 24 | 3 | - | - | . |
| Mass. | 11 | - | 11 | - | 3 | 27 | 35 | - | 2 | - | 36 | 111 | - | - | 2 |
| R.I. | 4 | - | 19 | - | 3 | 2 | 1 | - | 2 | - | 36 | 111 | - | 4 | 2 |
| Conn. | 6 | - | - | - | 4 | 23 | 33 | - | 6 | - | 15 | 18 | - | 1 | 1 |
| MID. ATLANTIC | 119 | 1 | 170 | - | 12 | 4,387 | 147 | 2 | 111 | 6 | 84 | 128 |  | 15 | 561 |
| Upstate N.Y. | 20 | 1 | 79 | - | 3 | , 379 | 74 | 2 | 46 | 6 | 84 25 | 128 73 | - | 15 11 | 536 |
| N.Y. City | 63 | - | 42 | - | 8 | 1,550 | 12 | - | 18 | - | 11 | 73 16 | - | 11. | 536 |
| N.J. | 20 | - | 44 | - | 1 | 1,014 | 18 | - | 11 | - | 14 | 9 | - | 3 | 2 |
| Pa. | 16 | - | 5 | - | - | 1,444 | 43 | 2 | 36 | 6 | 34 | 30 | - | 1 | 21 |
| E.N. CENTRAL | 29 | - | 25 | - | 10 | 77 | 206 | - | 212 | 3 | 67 | 246 | - | 7 | 173 |
| Ohio | 4 | - | 2 | - | 3 | 3 | 55 | - | 82 | 2 | 31 | +68 | $\cdot$ | 7 | 147 |
| III. | 8 | - | 20 | - | 4 | 1 25 | 27 | - | 7 | 2 | 14 | 47 | . | - | 2 |
| Mich. | 8 | - | 1 | - | 4 | 25 | 57 | - | 59 | - | 6 | 50 | - | 7 | 4 |
| Wis. | 1 | - | 2 | - | 1 | 39 9 | 51 16 | - | 56 8 | 1 | 5 | 23 | - | - | 19 1 |
| W.N. CENTRAL | 25 | - | 6 | - | 5 | 39 | 61 |  | 59 |  | 71 | 8 | - |  |  |
| Minn. | 13 | - | 5 | - | 4 | 10 | 7 | 1 | 59 | 4 | 76 | 82 | - | 4 | 16 6 |
| lowa Mo. | 2 | - | . | - | 1 | 15 | 7 | 1 | 19 | 3 | 27 | 28 | - | - | 6 |
| Mo. | 7 | - |  | - | 1 | 15 | 18 | 2 | 11 | i | 3 | 9 | - | - | 5 |
| N. Dak. | - | - | - | - | - | - | 18 |  | 21 | 1 | 26 | 29 | - | - | 5 |
| S. Dak. | 1 | - |  | - | - | - | 1 | - | 2 | - | 8 | 2 | - | - |  |
| Nebr. Kans. | - | U |  | U | - | 1 | 13 | U | 4 | U | 5 | 3 | i | - |  |
| Kans. | 2 | U | 1 | U | - | 13 | 14 | U | 4 | U | 3 4 | 5 | U | 4 |  |
| S. ATLANTIC Del. | 91 | 2 | 114 | 1 | 11 | 424 | 247 |  |  |  |  | 108 | - |  | 6 |
| Del. | 4 | . | 3 |  | 1 | 21 | 247 | 11 | 620 4 | 5 | 74 | 108 | - | 13 | 6 |
| Md. | 28 | - | 9 | - | 7 | 165 | 26 | 2 | 4 59 | 1 | 16 | 16 | - | 5 | 1 |
| V.C. Va . | 6 20 | - | 0 | $\cdots$ | - | - | 1 | - | 5 | 1 | 16 | 16 | - | 1 | 1 |
| W. Va. | 20 | 2 | 10 | $1 \dagger$ | 4 | 28 | 38 | 5 | 38 | 2 | 6 | 16 | . | . |  |
| N.C. | 7 | - | 25 | - | . | 35 | 14 | - | 22 | - | 2 | 7 | - | - |  |
| S.C. | 7 | - | 29 | - | - | 35 | 51 | - | 126 | - | 13 | 18 | - | - | 1 |
| Ga . | 3 | - | 29 | - | - | 12 | 18 | - | 46 | - | 9 | 9 | - | 2 |  |
| Fla. | 23 | - | 38 | - | - | 14 | 36 61 | 4 | 56 264 | 2 | 8 19 | 22 | - | 5 | 3 |
| E.S. CENTRAL | 12 | - | 441 | - | 18 | 2 | 90 | . | 40 | 1 | 17 | 39 | . | 1 | 100 |
| Tenn. | 1 | - | 439 | - | 1 | 1 | 27 | - |  | . | 17 | 3 | - | 1 | . |
| Ala. | 7 | - | - | - | - | 1 | 27 | - | 13 | - | 5 | 16 | - | 1 | 100 |
| Miss. | 4 | - | 2 | $\stackrel{-}{-}$ | 17 | - | 27 | - | 7 | 1 | 11 | 22 | - | . |  |
|  |  |  | 2 |  | 17 | - | 9 | - | 20 | - | 1 | 1 | - | - |  |
| W.S. CENTRAL Ark. | 17 | 63 | 365 | - | - | 127 | 100 | 3 | 285 | 4 | 34 | 33 |  | - | 5 |
| Ark. | 1 | - | - | - | - | 5 | 8 | - | 6 | - | 9 | 3 | - | - | 1 |
| Okla. | 4 | - | 11 | - | - | - | 23 | - | 15 | 1 | 1 | 9 | - | - |  |
| Tex. | 12 | 63 | 354 | - | - | 122 | 13 56 | 3 | 15 | 3 | 24 | 15 6 | - | - | 4 |
| MOUNTAIN | 11 | 1 | 4 | 1 | 7 | 941 |  | 1 |  |  |  |  |  |  | 4 |
| Mont. | . | . |  | . | 7 | 941 | 12 | 1 | 93 2 | 30 | 182 | 132 1 | - | 5 | 4 |
| Idaho | - | - | - | - | - | 380 | 8 | - | 3 | 4 | 21 | 20 | - | 1 |  |
| Wyo. | - | - | 1 | - | - | 38 | 2 | - | . | 4 | 21 | 20 | - | 1 |  |
| Colo. | 5 | 1 | 3 | 11 | 7 | 5 | 12 | - | 13 | - | 24 | 67 | - | - | 1 |
| N. Mex. | 1 | - | - | - | . | 98 | 6 | N | N | 3 | 36 | 13 | - | . | 1 |
| Ariz. | 4 | - | - | - | - | 312 | 15 | N | 51 | 14 | 75 | 8 | - | 2 |  |
| Utah | - | - | - | - | - | 129 | 4 | 1 | 17 | 14 9 | 24 | -8 | - | 1 | - |
| Nev. | 1 | - | - | - | - | 17 | 9 | , | 7 | - | 1 | 2 | - | 1 | 2 |
| PACIFIC | 128 | 1 | 89 | - | 18 | 1,796 | 343 | 4 | 197 | 27 | 300 | 291 | 2 | 66 | 170 |
| Wash. | 7 | - | - | - | 10 | 4 | 46 |  | 8 | 14 | 83 | 71 | 2 | 6 | , |
| Oreg. | 10 | - | 4 | - | 1 | 62 | 45 | N | N | 1 | 14 | 37 | - | 2 | 2 |
| Calif. | 104 | 1 | 47 | - | - | 1,712 | 241 | 4 | 177 | 13 | 184 | 134 | 2 | 38 | 161 |
| Alaska | 1 | - | 8 | - | 1 | 1 | 6 |  | 1 |  | 3 | 12 | 2 | 38 | 1 |
| Hawaii | 6 | $\bullet$ | 30 | - | 6 | 17 | 5 | - | 11 | - | 16 | 37 | - | 20 | 7 |
| Guam | 1 | U | 10 | U | - | - | - | U | 7 | U | - | - | U | 1 | - |
| P.R. | - | - | 253 | - | - | 84 | 3 | - | 1 | - | 8 | 27 | U | 1 | 1 |
| V.I. | - | - |  | - | - | 2 |  | 1 | 17 | - | - | 27 |  | - | . |
| Amer. Samoa | - | $\div$ | - | - | - | 24 | - | - | . | - | 6 | - | - | . | - |
| C.N.M.I. | - | U | - | U | - | - | - | U | - | U | 1 | - | U | . | - |

*For measles only, imported cases includes both out-of-state and international importations.
N : Not notifiable U : Unavailable ${ }^{\dagger}$ International ${ }^{5}$ Out-of-state

TABLE II. (Cont'd.) Cases of selected notifiable diseases, United States, weeks ending July 18, 1992, and July 20, 1991 (29th Week)

| Reporting Area | Syphilis (Primary \& Secondary) |  | Toxicshock Syndrome | Tuberculosis |  | Tularemia <br> Cum. <br> 1992 | Typhoid <br> Fever <br> Cum. <br> 1992 | Typhus Fever <br> (Tick-borne) <br> (RMSF) <br> Cum. <br> 1992 | Rabies, <br> Animal <br> Cum. <br> 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1991 \end{aligned}$ | $\begin{aligned} & \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1992 \end{aligned}$ | $\begin{aligned} & \hline \text { Cum. } \\ & 1991 \end{aligned}$ |  |  |  |  |
| UNITED STATES | 18,566 | 23,588 | 142 | 11,618 | 12,220 | 71 | 179 | 172 | 4,322 |
| NEW ENGLAND | 338 | 613 | 10 | 190 | 330 | - | 18 | 6 | 386 |
| Maine | 2 | - | - | 14 | 27 | - | - | . | 386 |
| N.H. |  | 12 | 6 | 1 | 5 | - | 1 | - | 1 |
| Vt. | 1 | 1 | - | 3 | 4 | - | . | - | 17 |
| Mass. | 176 | 288 | 3 | 74 | 161 | - | 11 | 4 | 4 |
| R.I. | 20 | 33 | 1 | 24 | 33 | - | . | 1 | - |
| Conn. | 139 | 279 | - | 74 | 100 | - | 6 | 1 | 364 |
| MID. ATLANTIC | 2,722 | 4,226 | 18 | 2,710 | 2,870 | - | 48 | 13 | 1,255 |
| Upstate N.Y. | 186 | 375 | 8 | 174 | 284 | - | 6 | 3 | 673 |
| N.Y. City | 1,432 | 2,075 | - | 1,687 | 1,733 | - | 20 | 3 |  |
| N.J. | 365 | 735 | - | 502 | 471 | - | 15 | 4 | 401 |
| Pa. | 739 | 1,041 | 10 | 347 | 382 | - | 7 | 3 | 181 |
| E.N. CENTRAL | 2,644 | 2,653 | 40 | 1,188 | 1,221 | 1 | 20 | 16 | 76 |
| Ohio | 404 | 363 | 12 | 183 | 178 | - | 3 | 11 | 6 |
| Ind. | 158 | 83 | 9 | 96 | 100 | - | - | 2 | 9 |
| III. | 1,213 | 1,242 | 5 | 591 | 640 | 1 | 15 | - | 12 |
| Mich. | 549 | 664 | 14 | 271 | 247 | - | 1 | 1 | 8 |
| Wis. | 320 | 301 | - | 47 | 56 | - | 1 | 2 | 41 |
| W.N. CENTRAL | 612 | 404 | 23 | 267 | 301 | 29 | 2 | 13 | 742 |
| Minn. | 44 | 44 | 5 | 68 | 58 | - | 1 | - | 107 |
| lowa | 25 | 35 | 5 | 22 | 43 | $\stackrel{-}{ }$ | - | ${ }^{\circ}$ | 130 |
| Mo. | 460 | 279 | 3 | 120 | 127 | 21 | 1 | 11 | 7 |
| N. Dak. | 1 | 1 | 1 | 2 | 6 | - | - | - | 100 |
| S. Dak. | - | 1 | - | 15 | 23 | 6 | - | 1 | 75 |
| Nebr. | 1 | 9 | 3 | 13 | 11 | 1 | - | - | 8 |
| Kans. | 81 | 35 | 6 | 27 | 33 | 1 | - | 1 | 315 |
| S. ATLANTIC | 5,245 | 6,976 | 14 | 2,175 | 2,273 | 3 | 13 | 36 | 975 |
| Del. | 125 | 88 | 3 | 25 | 16 | - | - | 3 | 127 |
| Md. | 384 | 581 | 2 | 152 | 210 | 1 | 2 | 4 | 296 |
| D.C. | 245 | 429 | - | 72 | 114 | - | 1 | 1 | 11 |
| Va . | 394 | 536 | 1 | 154 | 199 | 2 | - | 2 | 167 |
| W. Va. | 7 | 18 | 1 | 46 | 40 | - | 1 | 3 | 23 |
| N.C. | 1,341 | 1,066 | 3 | 271 | 310 | - | - | 16 | 2 |
| S.C. | 699 | 864 | 1 | 234 | 234 | - | 1 | 2 | 75 |
| Ga. | 1,063 | 1,713 | 1 | 481 | 439 | - | - | 3 | 204 |
| Fla. | 987 | 1,681 | 2 | 740 | 711 | - | 8 | 2 | 70 |
| E.S. CENTRAL | 2,436 | 2,559 | 1 | 762 | 784 | 5 | 3 | 30 | 76 |
| Ky. | 82 | 47 | - | 209 | 185 | 1 | - | 3 | 42 |
| Tenn. | 677 | 873 | 1 | 160 | 203 | 4 | - | 25 | - |
| Ala. | 933 | 945 | - | 229 | 221 | - | - | 2 | 34 |
| Miss. | 744 | 694 | - | 164 | 175 | - | 3 | - | . |
| W.S. CENTRAL | 3,408 | 4,274 | 1 | 1,202 | 1,435 | 17 | 6 | 49 | 445 |
| Ark. | 477 | 386 | . | 103 | 121 | 9 | - | 8 | 19 |
| La. | 1,421 | 1,366 | - | 87 | 119 | - | - | - | - |
| Okla. | 152 | 105 | - | 82 | 102 | 8 | - | 41 | 223 |
| Tex. | 1,358 | 2,417 | 1 | 930 | 1,093 | - | 6 | - | 203 |
| MOUNTAIN | 211 | 328 | 10 | 310 | 339 | 15 | 2 | 5 | 90 |
| Mont. | 7 | 5 | - | - | 3 | 8 | - | 2 | 11 |
| Idaho | 1 | 3 | 1 | 12 | 4 | - | 1 | 1 | - |
| Wyo. | 1 | 4 | - | - | 3 | 2 | - | . | 23 |
| Colo. | 24 | 53 | 4 | 29 | 33 | 2 | 1 | - | 5 |
| N. Mex. | 24 | 19 | 1 | 47 | 45 | 3 | - | 1 | 5 |
| Ariz. | 107 | 212 | 2 | 135 | 181 | - | - | - | 43 |
| Utah | 6 | 5 | 2 | 46 | 30 | - | - | 1 | 1 |
| Nev. | 41 | 27 | - | 41 | 40 | $\cdot$ | - | - | 2 |
| PACIFIC | 950 | 1,555 | 25 | 2,814 | 2,667 | 1 | 67 | 4 | 277 |
| Wash. | 49 | 105 | - | 173 | 167 | - | 4 | - |  |
| Oreg. | 25 | 45 | 1 | 71 | 58 | - | - | 1 | - |
| Calif. | 867 | 1,397 | 24 | 2,412 | 2,289 | 1 | 60 | 3 | 265 |
| Alaska | 4 | 4 | . | 31 | 41 | - | 6 | 3 | 12 |
| Hawaii | 5 | 4 | - | 127 | 112 | - | 3 | - | 12 |
| Guam | 2 | - | - | 34 | - | - | 3 | - | - |
| P.R. | 176 | 264 | . | 135 | 109 | - | 1 | . | 31 |
| V.I. | 35 | 69 | - | 3 | 2 | . | - |  | 31 |
| Amer. Samoa |  | 6 | . | 3 | 2 | - | 1 | - | - |
| C.N.M.I. | 4 | $\bullet$ | - | 37 | 6 | - | 1 | . | - |

U: Unavailable

## TABLE III. Deaths in 121 U.S. cities,* week ending July 18, 1992 (29th Week)

| Reporting Area | All Causes, By Age (Years) |  |  |  |  |  | $\mathbf{P} \& \mathbf{I}^{\dagger}$ <br> Total | Reporting Area | All Causes, By Age (Years) |  |  |  |  |  | $\begin{aligned} & \text { P\&I }{ }^{\dagger} \\ & \text { Total } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$ | $\geqslant 65$ | 45-64 | 25-44 | 1-24 | <1 |  |  | $\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$ | $\geqslant 65$ | 45-64 | 25-44 | 1.24 | <1 |  |
| NEW ENGLAND | 618 | 416 | 116 | 56 | 20 | 10 | 51 | S. ATLANTIC | 1,308 |  |  |  |  |  | 61 |
| Boston, Mass. | 175 | 116 | 34 | 17 | 3 | 5 | 19 | Atlanta, Ga. | 1,308 188 | 109 | 271 41 | 151 27 | 58 8 | 58 3 | 61 2 |
| Bridgeport, Conn. | 43 | 28 | 6 | 5 | 3 | 1 | 2 | Baltimore, Md. | 263 | 140 | 60 | 35 | 18 | 9 | 14 |
| Cambridge, Mass. | 25 | 15 | 8 | 2 |  |  | 3 | Charlotte, N.C. | r 80 | 52 | 16 | 35 9 | 18 | 3 | 3 |
| Fall River, Mass. | 34 | 27 | 6 | 1 |  |  | 1 | Jacksonville, Fla. | 120 | 82 | 16 | 10 |  | 3 | 7 |
| Hartford, Conn. | 58 | 36 | 9 | 5 | 7 | 1 | 1 | Miami, Fla. | 120 87 | 83 37 | 21 31 | 10 | 4 | 2 | 1 |
| Lowell, Mass. | 19 | 15 | 3 | 1 |  |  | 3 | Norfolk, Va. | 67 | 37 | 7 | 15 9 | 3 | 4 | 3 |
| Lynn, Mass. | 16 | 13 | 3 |  |  |  | 2 | Richmond, Va. | 79 | 39 49 | 7 15 | 8 | 2 | 4 | 6 |
| New Bedford, Mass. | 22 | 17 | 3 | 2 |  |  | 1 | Savannah, Ga. | 79 | 49 | 15 | 8 | 7 | - | 5 |
| New Haven, Conn. | 60 | 37 | 10 | 9 | 3 | 1 | 4 | St. Petersburg, Fla. | 53 | 41 | 8 | 3 | 1 |  | 5 |
| Providence, R.I. | 32 | 12 | 10 | 8 | 2 |  |  | Tampa, Fla. | 145 |  | 32 | 3 9 | 7 |  |  |
| Somerville, Mass. | 6 | 5 | 1 | - | - |  | - | Washington, D.C. | 145 | 84 | 32 | 9 18 | 7 | 3 2 | 15 5 |
| Springfield, Mass. | 46 | 31 | 11 | 4 | - |  | 5 | Wilmington, Del. | 176 | 82 | 38 | 18 | 4 | 34 | 5 |
| Waterbury, Conn. | 31 | 24 | 6 |  | 1 |  | 2 | Wimington, Del. | 10 | 9 |  | 1 |  |  |  |
| Worcester, Mass. | 51 | 40 | 6 | 2 | 1 | 2 | 9 | E.S. CENTRAL | 715 | 462 | 166 | 54 | 15 | 18 | 63 |
| MID. ATLANTIC | 2,750 | 1,688 | 596 | 339 | 70 | 57 |  | Birmingham, Ala. | 101 | 62 | 25 | 8 | 1 | 5 | 2 |
| Albany, N.Y. | 2,76 | 1,688 | 7 | 4 | 2 | 57 | 97 | Chattanooga, Tenn. | 35 | 18 | 13 | 3 | 1 |  | 3 |
| Allentown, Pa . | 30 | 23 | 6 | 4 | 2 | 1. | 1 | Knoxville, Tenn. | 74 | 49 | 14 | 8 | 3 | - | 5 |
| Buffalo, N.Y. | 100 | 68 | 25 | 2 | 2 | 3 | 1 | Lexington, Ky. | 68 | 46 | 16 | 4 | 1 | 1 | 11 |
| Camden, N.J. | 34 | 21 | 5 | 1 | 3 | 4 | 3 | Memphis, Tenn. | 197 | 129 | 40 | 18 | 2 | 8 | 25 |
| Elizabeth, N.J. | 22 | 12 | 6 | 4 | 3 | 4 | 1 | Mobile, Ala. | 70 | 54 | 10 | 3 | 1 | 2 | 5 |
| Erie, Pa. 5 | 44 | 31 | 11 | 1 | 1 |  | $\overline{-}$ | Montgomery, Ala. | 40 | 28 | 9 | 2 | 1 | - | ${ }_{10}$ |
| Jersey City, N.J. | 50 | 29 | 10 | 9 | 2 | - | 1 | Nashville, Tenn. | 130 | 76 | 39 | 8 | 5 | 2 | 10 |
| New York City, N.Y. | 1,514 | 919 | 313 | 222 | 38 | 22 | 49 | W.S. CENTRAL | 1,408 | 874 | 264 | 157 | 60 | 53 | 73 |
| Newark, N.J. | 68 | 21 | 19 | 17 | 7 | 4 | 8 | Austin, Tex. | 54 | 37 | 7 | 4 | 4 | 2 | 4 |
| Paterson, N.J. | 33 | 13 | 10 | 2 | 1 | 7 | 1 | Baton Rouge, La. | 50 | 33 | 4 | 7 | 3 | 3 | 3 |
| Philadelphia, Pa. | 361 | 220 | 83 | 39 | 10 | 9 | 9 | Corpus Christi, Tex. | 36 | 24 | 4 | 6 | 1 | 1 | 1 |
| Pittsburgh, Pa.§ | 90 | 55 | 22 | 11 | 1 | 1 | 5 | Dallas, Tex. | 220 | 137 | 39 | 29 | 9 | 6 | 9 |
| Reading, Pa. | 15 | 9 | 4 | 2 |  |  | 1 | El Paso, Tex. | 65 | 39 | 17 | 4 | 1 | 4 | 4 |
| Rochester, N.Y. | 111 | 72 | 26 | 11 | 2 | - | 4 | Ft. Worth, Tex. | 119 | 78 | 16 | 15 | 6 | 4 | 7 |
| Schenectady, N.Y. | 26 | 18 | 5 | 3 | 2 |  |  | Houston, Tex. | 364 | 194 | 79 | 51 | 19 | 21 | 26 |
| Scranton, Pa.§ | 22 | 17 | 4 | 3 | - | 1 | - | Little Rock, Ark. | 63 | 43 | 9 | 6 | 2 | 3 | 2 |
| Syracuse, N.Y. | 103 | 70 | 25 | 5 | - | 3 | 6 | New Orleans, La. | 110 | 65 | 22 | 12 | 6 | 5 |  |
| Trenton, N.J. | 37 | 26 | 7 | 2 | - | 2 | 4 | San Antonio, Tex. | 142 | 99 | 29 | 9 | 3 | 2 | 7 |
| Utica, N.Y. | 18 | 13 | 4 | 2 | 1 | 2 | 4 | Shreveport, La. | 43 | 31 | 8 | 2 | 2 | 2 | 5 |
| Yonkers, N.Y. | 26 | 19 | 4 | 3 | 1 | - | 2 | Tulsa, Okla. | 142 | 94 | 30 | 12 | 4 | 2 | 5 |
| E.N. CENTRAL | 2,053 | 1,247 | 391 | 215 | 137 | 63 | 98 | MOUNTAIN | 730 | 478 | 138 | 62 | 26 | 26 | 39 |
| Akron, Ohio | 77 | 59 | 9 | 5 | 1 | 63 3 | 98 | Albuquerque, N.M. | 68 | 50 | 11 | 6 | 1 | 2 | 3 |
| Canton, Ohio | 43 | 34 | 5 | 5 | 2 | 2 | 2 | Colo. Springs, Colo. | 40 | 24 | 6 | 5 | 2 | 3 | 1 |
| Cincinnati, Ohio | 422 | 148 | 74 | 93 | 95 | 12 | 13 | Denver, Colo. | 117 | 75 | 16 | 13 | 5 | 8 | 2 |
| Cleveland, Ohio | 138 | 97 | 24 | 10 | 2 | 5 | 18 | Las Vegas, Nev. | 103 | 58 | 29 | 9 | 4 | 3 | 5 |
| Columbus, Ohio | 117 | 77 89 | 23 | 11 | 2 | 4 | 1 | Ogden, Utah | 27 | 20 | 5 | - | 1 | 1 | 16 |
| Dayton, Ohio | 156 | 89 | 42 | 16 | 3 | 6 | 7 | Phoenix, Ariz. | 145 | 98 | 26 | 9 | 5 | 7 | 16 |
| Detroit, Mich. | 125 176 | 89 101 | 18 | 9 | 5 | 4 | 7 | Pueblo, Colo. | 19 | 12 | 5 | 2 | - | - | 1 |
| Evansville, Ind. | 176 47 | 101 34 | 43 | 21 | 8 | 3 | 3 | Salt Lake City, Utah | 105 | 70 | 18 | 12 | 2 | 3 | 6 |
| Fort Wayne, Ind. | 54 | 41 | 11 | 2 |  | - | 1 | Tucson, Ariz. | 106 | 71 | 22 | 6 | 6 | 1 | 5 |
| Gary, Ind. | + 9 | + 6 | 11 | 2 | 1 |  | 4 | PACIFIC | 1,992 | 1,324 | 359 | 197 | 68 | 39 | 105 |
| Grand Rapids, Mich. | 47 | 31 | 13 | 2 | 1 |  | 2 | Berkeley, Calif. | 11 | 8 | 2 | 1 | - | ; | 4 |
| Indianapolis, Ind. | 170 | 111 | 33 | 15 | 2 |  | 5 | Fresno, Calif. | 99 | 62 | 19 | 4 | 7 | 7 | 7 |
| Madison, Wis. | 57 | 37 | 11 | 7 | 2 | 9 | 4 | Glendale, Calif. | 26 | 21 | 2 | 1 | 1 | 1 | 1 |
| Milwaukee, Wis. | 141 | 95 | 29 | 6 | 6 |  | 4 | Honolulu, Hawaii | 75 | 50 | 19 | 3 | 2 | 1 | 4 |
| Peoria, III. | 56 | 38 | 6 | 7 | 2 | 3 | 7 | Long Beach, Calif. | 62 | 47 | 8 | 5 | 1 | 1 | 25 |
| Rockford, III. | 44 | 33 | 4 | 1 | 3 | 3 | 3 | Los Angeles, Calif. | 590 | 365 | 107 | 80 | 30 | 5 | 25 |
| South Bend, Ind. | 30 | 21 | 7 | 2 |  | 3 | 1 | Pasadena, Calif. | 30 | 21 | 2 | 3 | 2 | 2 | 6 |
| Toledo, Ohio | 90 | 68 | 13 | 4 | 1 | 4 | 10 | Portland, Oreg. | 146 | 100 | 32 | 11 | 2 | 1 | 8 |
| Youngstown, Ohio | 54 | 38 | 13 | 2 | 1 | 4 | 10 | Sacramento, Calif. | 152 | 96 | 30 | 12 | 7 | 7 | 8 16 |
| W.N. CENTRAL | 778 | 547 | 124 | 55 | 25 |  | 34 | San Francisco, Calif. | 177 | 125 91 | 27 39 | 16 | 3 | 5 1 | 7 |
| Des Moines, lowa | 81 | 56 | 15 | 6 | 25 | 27 | 34 | San Jose, Calif. | 157 | 91 127 | 39 34 | 23 14 | 2 | 5 | 11 |
| Duluth, Minn. | 22 | 18 | 2 | 1 | 1 | 3 |  | Santa Cruz, Calif. | +34 | 127 30 | 34 3 | 14 1 | 2 | 5 | 4 |
| Kansas City, Kans. | 24 | 13 | 7 | 2 | 1 | 1 | 1 | Seattle, Wash. | 130 | 86 | 23 | 16 | 4 | 1 | 4 |
| Kansas City, Mo. | 110 | 83 | 18 | 6 | 1 | 2 | 2 | Spokane, Wash. | + 54 | 41 | 23 6 | 16 4 | 1 | 2 | 1 |
| Lincoln, Nebr. | 28 | 18 | 6 | 2 | 2 |  | 1 | Tacoma, Wash. | 67 | 54 | 6 | 3 | 4 | . | 1 |
| Minneapolis, Minn. | 210 | 153 | 26 | 16 | 8 | 7 | 15 | TOTAL | 12,352 ${ }^{\text { }}$ |  |  |  | 479 | 351 | 621 |
| St. Louis, Mo. | 72 124 | 47 84 | 18 | 10 | 2 | 4 | 3 |  | 12,352 | 7,804 | 2,425 | 1,286 | 479 |  |  |
| St. Paul, Minn. | 66 | 46 | 12 | 4 | 5 3 | 9 | 7 |  |  |  |  |  |  |  |  |
| Wichita, Kans. | 41 | 29 | 4 | 7 |  |  | 2 |  |  |  |  |  |  |  |  |

"Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or
more. A death is reported by the place of its occurrence and by the week more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not
included. $\dagger$ Pneumoni
SBecause of changes in reporting methods in these 3 Pennsylvania cities, these numbers are partial counts for the current week.
Complete counts will be available in 4 to 6 weeks.
TTotal includes unknown ages.
U : Unavailable

FIGURE II. Acquired immunodeficiency syndrome cases, by 4-week period of report - United States, 1984-1992

*Change in case definition.
${ }^{\dagger}$ Change to reflect Notice to Readers Vol. 41, No. 18, p. 325.
FIGURE III. Tuberculosis cases, by 4-week period of report - United States, 1984-1992


FIGURE IV. Gonorrhea cases, by 4-week period of report - United States, 1984-1992


FIGURE V. Syphilis cases, by 4-week period of report - United States, 1984-1992


Notice to Readers

## Changes in Table III: Deaths in 121 U.S. cities

Beginning with this issue, reports from Lexington, Kentucky, will be included under the East South Central reporting area heading in Table III, Deaths in 121 U.S. cities. Reports from Louisville, Kentucky, are no longer available.

## Quarterly AIDS Map

The following map provides information on the reported number of acquired immunodeficiency syndrome (AIDS) cases per 100,000 population by state of residence for July 1991 through June 1992. The map appears quarterly in MMWR. More detailed information on AIDS cases is provided in the quarterly HIV/AIDS Surveillance Report, single copies of which are available free from the CDC National AIDS Clearinghouse, P.O. Box 6003, Rockville, MD 20849-6003; telephone (800) 458-5231.

AIDS cases per 100,000 population - United States, July 1991-June 1992


The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and is available on a paid subscription basis from the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone (202) 783-3238.

The data in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday. Inquiries about the MMWR Series, including material to be considered for publication, should be directed to: Editor, MMWR Series, Mailstop C-08, Centers for Disease Control, Atlanta, GA 30333; telephone (404) 332-4555.

Director, Centers for Disease Control
William L. Roper, M.D., M.P.H.
Deputy Director, Centers for Disease Control Walter R. Dowdle, Ph.D.
Director, Epidemiology Program Office Stephen B. Thacker, M.D., M.Sc.

Editor, MMWR Series
Richard A. Goodman, M.D., M.P.H.
Managing Editor, MMWR (weekly)
Karen L. Foster, M.A.
Writers-Editors, MMWR (weekly) David C. Johnson
Barbara J. Reynolds, M.A.
Caran R. Wilbanks
Editorial Assistant, MMWR (weekly)
Darlene D. Rumph
¿U.S. Government Printing Office: 1992-631-123/67018 Region IV


## LLO8-Z6 (OQJ) ©oN uo!leכ!!qnd SHH


[^0]:    *Use of trade names is for identification only and does not imply endorsement by the Public Health Service or the U.S. Department of Health and Human Services.

[^1]:    *National data on vaccination coverage are not available to assess the overall impact of recent private- and public-sector vaccination efforts. However, response of the public sector (federally, state-, and locally funded clinics) could be evaluated because records of vaccine doses administered in public clinics to preschool-aged children are reported to CDC.
    ${ }^{\dagger}$ Data includes doses administered of measles-mumps-rubella, measles-rubella, and measles vaccines.
    ${ }^{5}$ Measles vaccine is usually recommended for children aged 12-15 months depending on local policy (3).

[^2]:    *1991 provisional data.
    ${ }^{\dagger}$ Data on doses administered to children aged 1 year available since 1988.

[^3]:    *Estimated annual birth cohort divided by the number of children aged $<12$ months receiving a first dose of DTP or OPV in public clinics.

[^4]:    *Per 10,000 person-years.
    ${ }^{\dagger}$ Because of the small number of persons of other races in the sample, this includes only the 12,402 white participants.

[^5]:    *Because of the small number of persons of other races in the sample, this includes only the 12,402 white participants.

[^6]:    *The NHA includes health services and supplies; the type of product consumed or the type of facility providing the service determines whether it is included in the NHA. The NHA is categorized into personal health care, government public health activities, program administration, and research and construction. The estimates for these categories are based on secondary data sources that include the federal budget, Bureau of the Census survey of new construction, Consumer Expenditure Survey, nursing home surveys, trade associations, and the Bureau of the Census. The NHA excludes certain prevention programs (e.g., environmental health, sewer and water systems, and some social programs that have a health component). The national health expenditures represent the combined value of these goods and services during a year.
    ${ }^{\dagger}$ The most recent year for which data from state health agencies were available that included estimates of the proportion devoted to prevention was 1984, which were applied to total expenditures in 1988 .

[^7]:    *Updated monthly; last update July 4, 1992.
    ${ }^{\dagger}$ Two cases of suspected poliomyelitis have been reported in 1992; six of the nine suspected cases with onset in 1991 were confirmed and 5 of the 8 suspected cases with onset in 1990 were confirmed, and all were vaccine associated.
    ${ }^{6}$ Updates for first quarter 1992.

[^8]:    $N$ : Not notifiable
    N: Not notifiable U: Unavailable
    *Updated monthly; last update July 4, 1992.
    C.N.M.I.: Commonwealth of the Northern Mariana Islands

